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A statistical analysis based on three sets of earthquake record

mvestfgate the significance of peak ground acceleration to velocity r:t:Z Tzr/-i?rm

displﬂce"'e"t ductility demand of simple inelastic systems. The yield strength of the

the specified from the base shear formula in the 1985 National Building Code of
1985) and that in NBCC 1980 respectively. Sl

on

In the

design cpse represents the common practice of specifying seismic design forces based on

|atter
g single

peak site acceleration. A comparison of the statistical results between the two

nethods ShOWS that the a/v ratio of ground motion has a significant effect on the

displm"t ductility demand and the base shear provisions in NBCC

1985 provide an

effective way to incorporate the a/v ratio into design base shear specification.

| INTRODUCTION

one of the most important steps in seismic
design of buildings is the proper
representation of design earthquake
inputs. As a common approach in current
design practice, the design
earthquake inputs are characterized by
smoothed design response spectra. In many

seismic codes and design standards, it has
been assumed that one design spectral
shape would be sufficient to describe

design earthquakes for seismic design. The
spectral

standard

shape is normally based on the

design spectrum suggested by
S e Hall (1973). and In most

c8ses, peak ground acceleration is used to
' severity of

However, as
are obtained,
the 1971 San Fernando
it becomes apparent that the
nadeq .. "91€ design spectrum shape Is
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contain severe, long duration acceleration
pulses which would result in very high
displacement ductility demands for
inelastic systems designed based on the
standard design spectrum. Hall (1982,1986)

noticed the need to use another design
spectrum for a distant earthquake source
on the basis that ground motions distant

from the energy source would generally be
of long-period sustained type due to the
filtering effect through ground media.
Therefore, the standard design spectrum
may be representative of strong seismic
ground motions at moderate distances from
the causative fault, but to allow for
ground motions close to or distant from
the energy source, additional design
spectra may need to be developed on the
basis of recorded near-field and far-field
earthquake accelerograms.

Seismological studies have indicated
that the attenuation of ground mot ion
velocity with distance is general ly slower
that the attenuation of acceleration.
Therefore, the a/v ratio would be high
near an earthquake source; and it would be
low at large distance from ha f-_m.'aja':vr‘

r ke. Ground motions in the ftormer
::sihﬂx:y be of short-duration, high-
frequency, and impulsive type whereas
those in the latter case would be of

type.
longer-duration and more periodic

Also, inspection of earthquake records
(Zhu (1985)) has revealed that ground
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in whichK, I, F, and W have the same
meaning as in NBCC 1980; v is the zonal
velocity ratio defined as the ratio of
zonal peak ground velocity to a velocity
of Im/s; S, is a new seismic response
factor descr*bed graphically in Figure 2.
The zonal velocity ratio corresponds to a
probsbility of exceedance of 10% in 50
zt"s which is appropriate to the seismic
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cauua (Heidebrecht et al. (1983)). It
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Figure 2. Seismic response factor SN
in NBCC 1985

all the input ground motions are
normalized to a common peak velocity of

0.2 m/s. For F=1.0 and 1=1.0;5 - the yield
strength for a system is given by
Ry = 1.5V
= 1.5%0.44%0.2 SNKH
=0 13 SNKH (5)

in which 1.5 is again the load factor. The
corresponding seismicC resistance
coefficient is given by

C. = = 0.
y = Ry/M = 0.132 5K (6)

In both cases of
specification, five
strength levels are
corresponding to K= 0.7, 1.0, (3 €t
and 5.0. The first four K values are
recommended by both NBCC 1980 and NBCC
1985 for various types of structural
systems ranging from complete moment
resisting ductile frames (K=0.7) to
unreinforced masonary structures (K=2.0).
K=5.0 is included because previous study
(Heidebrecht, Tso and Cherry (1983))
indicates that buildings designed with
this value would be expected to reach the
threshold of yielding under earthquake
excitation. The initial undamped period of

yvield strength

different yield
considered,

the systems cons idered varies From_O.l to
2 0 sec, a period range covering the
fundamental periods of most building
structures.
3 INPUT GROUND MOTION
total of thirty-six horizontal
States
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mum displacement ductility
characterizing

nse in seismic design, It
in this

mean values of displacement
the

f earthquake records with
yield

of the systems are specif ied

NORMAL R/V

from either the base shear formula in NBCC

1980 or that in NBCC 1985, The
corresponding coefficients of variation
are calculated to illustrate the
dispersion characteristics for the
computed peak inelastic responses. Since
for vyield strength specification based on
NBCC 1980, all the earthquake
accelerograms are normal ized to a common
peak acceleration and a single seismic
response factor is used, the mean values

of displacement ductility demand and the

corresponding coefficients of variation

are also obtained for the whole ensemble

?F thirty-six earthquake records. Any

INncrease in the coefficient of variation
as compared to the analyses based on the
three separate sets of records would
indicate the significance of a/v ratio as
a parameter to reflect the frequency
characteristics of earthquake ground
motions in a statistical sense.

4.1 Statistical
design

results for NBCC 1980

The mean displacement ductility demands
are shown in Figure 5 for the three
separate sets and the whole ensemble of
earthquake records. As can be seen in
Figure 5, the mean displacement ductility

demands increase with decreasing K value,
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significantly among the three different
a/v ranges, but the difference becomes

more significant as K value |Is reduced,
i.e. stiff systems are designed with lower
yield strength. For long-period systems,
there exists significant difference iIn
ductility demand among the three a/v
ranges even for large K values, and the
difference is particularly pronounced for
small K values, f.e. for flexible systems
designed with lower yield strength. For
example, in the case of K=0.7, the mean
ductility demand for the low a/v range set
of records is about twice that for the
high a/v range set in the short period
range whereas the difference INnCreases
toTzéve tlrg?s In the long period range.
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result, the effective periods of ¢y,
systems are elongated (Iwan and gatg,
(1979)), and the strength demands beyond
the initial elastic periods of the Systems
may reflect the actual excitation
intensity associated with the systeps
Since the strength demands for the three
sets of records are significantly
different in the moderate and long perjod
ranges, the differences in ductility
demand in the short period range increase
as K value 1is decreased, i.e. design
strength is significantly reduced from the
strength demand.

Plotted in Figure 6 are the coefficients

of variation for the computed displacement
ductility demands for the three separate

sets and the whole ensemble of earthquake
records. It can be observed in Figure 6
that even though the number of earthquake

records included in the statisitcal
gnalysls for the whole ensemble is three
Imes  that for the three separate sets,

the coefficients of wvariation for the
whole ensemble are, in general, higher
?2:‘% those for the three separate sets.
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Figure 6. Coefficients of variation for_“
displacement ductility demands for l?n li-
near systems based on NBCC 1980 design

4,2 Statistical
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results for NBCC

The mean displacement ductility demands
for the three sets of earthquake records

are shown in Figure 7. The significant
1Wrﬁvement in

di the consistency of
thsplacement “ductility demands among the
cI;::| different a/v ranges can be seen

thos 5 .by comparing the results with
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w1980 - des Thi
imor gn (Figure 5). G
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struct,
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designed with low yield strength.

The foregoing observations may be
explained by referring to Figure 4.
Because periods longer than about 0.5 sec
fall within the velocity sensitive region,

the normalization of all the records to
the same peak velocity results in similar

strength demands for the three sets of
earthquake records for periods longer than
it sec and three plateaus with
significantly different strength demands
in the short period range. The significant
differences in strength demands over the

short period range are compensated by
using three different

strength supply
curves for the three sets of
accelerograms. As = result, the

differences in ductility demands among the

three sets or ground moitons are
significantly lower than the case in which
all the records are normalzed to a

common
peak acceleration and a single seismic
response factor is used in specifying

design yield forces. However, even though
three different strength supply curves are
used in the short period range, the
strength demands with respect to the
corresponding strength supplies are still
the highest for the high a/v range set, as

indicated by the relationships between the
strength demand curves and the strength

supply curves for K=5.0. As a result, the
highest ~ displacement ductilities are
demanded for the high a/v range set. For

K=0.7, the effect of perlod elongation
becomes significant for shgrt-perlod
systems, resulting in smaller differences

‘n ductility demands among the three
of accelerograms in the very short period
range.

The coefficients of variation for the
computed displacement ductility demands
are presented in Figure 8 for the three
sets of earthquake records. For the low
and norma | a/v range sets, the
coefficients of variation stabilize around
a value of about .25 ‘over the_ entire
period range. In the case OF. high a/v
range set, the variation coefficients for
large K values (especially K=g.0) are
relatively high at very short periods near

0.1 sec, but they drop rapidlg wlﬁh
increase 1N period. Therefore, 1N th:
period range of 0.2-2.0 Sec,

cients of variation for the three
gzizflf records for NBCC 1985 design 2r?;
in general, lower than those for the 7 0
ensemble of records for NBCC 1980 des 92.
[t can be noticed in Figure 7 that for
design strength specification based ??
NBCC 1985, the ductility demands for smah
K wvalues are still not uniform over i a
period range considered with very 2;?
ductility demands at short periods. &
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is mainly due to the utilization of
constant K factor over the entire per103
range. A period-dependent modif \cat jon
factor may be needed in order to achjieye a
more uniform distribution of ductility
demand over structural period, as
suggested by Newmark and Hall (1973),.

As can be seen in Figure 7, the mean
ductility demands for K=5.0 are, in
general, slightly less than one for 3l
the three sets of erathquake records,
Therefore, structures designed with K=5.0
would generally be excited into the
threshold of yielding when subjected to
ground motions in all three a/v ranges.

> CONCLUSIONS

The normalization of all the earthquake

::':3:-1?: to a common peak acceleration
content 'n significantly different energy
ran > over the moderate and long period

9€s for the three sets of erathquake

records with different a/v ranges. As @
spectr:,m Ehe use of a single design
forces IZ 9Pe to estimate seismic design
N the :?5 to substantial differences
among the +r. 2CEMent ductility demand®
©Specig] ) three sets of accelerogram
With Jow )):l for flexible systems designec
set At Strength. The low a/v range

the highest displacemeﬂt
reas the high a/v range %€
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